

Volt/VAR Control and Optimization Concepts and Issues

Bob Uluski, EPRI

Technical Executive

- Basic concepts of Volt-VAR
 Control and Optimization
- How these technologies should be assessed ("Proof of Concept")

What is Volt-VAR control?

- Volt-VAR control (VVC) is a fundamental operating requirement of all electric distribution systems
- The prime purpose of VVC is to maintain acceptable voltage at all points along the distribution feeder under all loading conditions

Volt-VAR Control in a Smart Grid World

- <u>Expanded</u> objectives for Volt-VAR control include
 - Basic requirement maintain acceptable voltage
 - Support major "Smart Grid" objectives:
 - <u>Improve efficiency</u> (reduce technical losses) through voltage optimization
 - Reduce electrical demand and/or Accomplish energy conservation through voltage reduction
 - Promote a "self healing" grid (VVC plays a role in maintaining voltage after "self healing" has occurred)
 - <u>Enable widespread deployment</u> of Distributed generation, Renewables, Energy storage, and other distributed energy resources (dynamic volt-VAR control)

Concept of Conservation Voltage Reduction

- ANSI standards have some flexibility in the allowable delivery voltage
- Distribution utilities
 typically have delivery
 voltage in upper portion of
 the range
- Concept of CVR: Maintain voltage delivered to the customer in the lower portion of the acceptable range

Allowable Voltage Range

(in terms of voltages used in homes)

Source: PCS Utilidata

Conservation Voltage Reduction – Why Do It?

 Many electrical devices operate more efficiently (use less power) with reduced voltage

$$P = V^2 + R$$

"Constant Impedance" Load

Incandescent Light Bulb (70W)

"Evaluation of Conservation Voltage Reduction (CVR) on a National Level"; PNNL; July 2010

Impact of Voltage Reduction on Electric motors Conservation Voltage Reduction

Voltage effects on ½ Hp, 230 Vac, 1Ø

M.S. Chen, R.R. Shoults and J. Fitzer, Effects of Reduced Voltage on the Operation and Efficiency of Electric Loads, Volumes 1 & 2, EPRI, Arlington: University of Texas, 1981, Motor Number 3

Efficiency improve for small voltage reduction

Incremental change in efficiency drops off and then turns negative as voltage is reduced

Negative effect occurs sooner for heavily loaded motors

Conservation Voltage Reduction – Why Do It?

 Some newer devices have exhibit "constant power" behavior to some extent

Incandescent Light Bulb (70W)

Television (Cathode Ray Tube)

Compact Fluorescent Light (CFL) 13W

Plasma TV

Recent results

 Despite trend to constant power, reported results are still pretty favorable

	Mean Voltage		Mean
			Energy
CVRf	Reduction		Reduction
pu	%	V	%
0.1	3.29%		0.2%
0.2	2.33%	2.86	0.5%
0.3	2.83%	3.47	0.8%
0.7-0.9	1.5% - 2.5%		1.1%-2.2%
0.6	2.00%		1.2%
0.5	2.96%	3.66	1.4%
0.8	2.00%		1.5%
0.6	2.98%		1.7%
0.2-0.7			1.8%
0.6	3.28%		2.0%
0.7	2.98%		2.1%
0.6	3.42%	4.22	2.1%
0.9	2.50%		2.1%
0.7	2.94%	3.61	2.2%
0.7	3.57%		2.4%
0.6	3.95%		2.4%
1.1	2.38%	2.9	2.6%
2.5	1.05%	1.3	2.6%
1.0	2.87%	3.54	2.7%
1.6	1.71%	2.08	2.8%
1.1	2.64%	3.25	3.0%
			3.4%
3.0	1.18%	1.4	3.5%
1.2	3.21%	3.9	3.9%
0.9	4.44%	5.3	4.0%
			4.0%
1.0	4.23%	5.1	4.2%
1.6	2.90%	3.5	4.6%
2.7	1.84%	2.26	4.9%
1.5	3.77%	4.69	5.6%
1.9	3.17%	3.8	6.0%
4.7	1.72%	2.09	8.1%

CVR Also Impacts Reactive Power

Effect of CVR on kVAR is more significant than on kW
kW CVRf ≈ 0.7
kVAR CVRf ≈ 3.0

kvar CVR factor Results by Utility

Distribution Efficiency Initiative Northwest Energy Efficiency Alliance

Summary of Voltage Optimization Benefits

- Voltage optimization is a very effective energy efficiency measure
 - Demand Reduction 1.5% to 2.1%;Energy Reduction 1.3% 2%
 - "Painless" efficiency measure for utilities and customers
 - Cost effective Leverage existing equipment
 - Short implementation schedule
- Reduce number of tap changer operations
- Improved voltage profile
- Early detection of:
 - Voltage quality problems
 - Voltage regulator problems

Programs: Power Quality (1), Smart Distribution Research Areas (124), Distribution Systems (128), IntelliGrid (161), Electric Transportation (18), Efficient Distribution Systems (172B)

June 14 - 17, 2010

Fairmont Le Château Frontenac, Québec City, Canada

EPRI PQ/Smart Distribution Conference & Expo June 2010

Approaches to Volt VAR Control

- Standalone Voltage regulator and LTC controls with line drop compensation set to "end-of-line" voltage for CVR
- On-Site Voltage Regulator (OVR) for single location voltage regulation
- "Rule-based" DA control of capacitor banks and voltage regulators for CVR with/without voltage measurement feedback from end of line
- "Heuristic" voltage regulation (e.g. PCS Utilidata "AdaptiVolt", Cooper Power Systems IVVC)
- "Distribution model based" Volt-VAR Optimization

Standalone Controller Approach

- •VV Control managed by individual, independent, standalone volt-VAR regulating devices:
 - Substation transformer load tap changers (LTCs) with voltage regulators
 - Line voltage regulators
 - Fixed and switched capacitor banks

Reactive Power Compensation Using Fixed and Switched Capacitor Banks

 Switch single capacitor bank on or off based on "local" conditions (voltage, load, reactive power, etc.)

Control parameters

- Power Factor
- Load Current
- Voltage
- Var Flow
- Temperature
- Time of day and day of week

Standalone Volt VAR Controllers - Strengths and Weakness

Strengths

- Low cost no cost
- Minimal learning curve
- Does not rely at all on field communications
- Very scalable approach can do one feeder or many

"Local" Current/ Voltage Measurements On/Off Control Command Signal Signal

Weaknesses

- No self monitoring features
- Lacks coordination between volt and VAR controls not able to block counteracting control actions
- System operation may not be "optimal" under all conditions need to build in bigger safety margin due to lack of "visibility" of remote conditions
- Lacks flexibility to respond to changing conditions out on the distribution feeders – can misoperate following automatic reconfiguration
- May not handle high penetration of DG very effectively
- Cannot override traditional operation during power system emergencies

"SCADA" Controlled Volt-VAR

- Volt-VAR power apparatus monitored and controlled by Supervisory Control and Data Acquisition (SCADA)
- Volt-VAR Control typically handled by two separate (independent) systems:
 - VAR Dispatch controls capacitor banks to improve power factor, reduce electrical losses, etc
 - Voltage Control controls LTCs and/or voltage regulators to reduce demand and/or energy consumption (aka, Conservation Voltage Reduction)
- Operation of these systems is primarily based on a <u>stored set</u> of <u>predetermined rules</u> (e.g., "if power factor is less than 0.95, then switch capacitor bank #1 off")

SCADA (Rule Based) Volt-VAR Control System Components

- Substation Remote Terminal Unit (RTU) handles device monitoring and control
- VVO/CVR processor contains "rules" for volt and VAR control
- Switched Cap banks & local measurement facilities
- Voltage regulators (LTCs) & local measurement facilities
- Communication facilities

Sample Rules:

- 1. Identify "candidate" cap banks for switching
 - Cap bank "i" is currently "off"
 - Rating of cap bank "i" is less than measured reactive power flow at head end of the feeder
- 2. Choose the "candidate" cap bank that has the lowest measured local voltage

VVO/CVR

Processor

Sample rule for voltage reduction:

1. If voltage at head end of the feeder exceeds LTC setpoint, then lower the voltage

SCADA Controlled Volt VAR Summary

•Strengths:

- Usually some efficiency improvement versus standalone controllers
- Self monitoring
- Can override operation during system emergencies
- Can include remote measurements in the "rules" smaller margin of safety needed

•Weaknesses:

- Somewhat less scalable that standalone controllers (minimum deployment is one substation)
- More complicated requires extensive communication facilities
- Does <u>not</u> adapt to <u>changing feeder configuration</u> (rules are fixed in advance)
- Does <u>not</u> adapt well to <u>varying operating needs</u> (rules are fixed in advance)
- Overall efficiency is improved versus traditional approach, but is not necessarily optimal under all conditions
- Operation of VAR and Volt devices usually not coordinated (separate rules for cap banks & Vregs)
- Does <u>not</u> adapt well to <u>presence of high DG penetration</u>

Distribution Model Driven Volt-VAR Control and Optimization

- Develops and executes a coordinated "optimal" switching plan for <u>all</u> voltage control devices to achieve utility-specified objective functions:
 - Minimize energy consumption
 - Minimize losses
 - Minimize power demand
 - Combination of the above
- Can bias the results to minimize tap changer movement and other equipment control actions that put additional "wear and tear" on the physical equipment

DMS Volt-VAR Optimization

Volt VAR Optimization (VVO) System Operation

Volt VAR Optimization (VVO) System Operation

Volt VAR Optimization (VVO) System Operation

Volt VAR Optimization (VVO) System Operation

Volt VAR Optimization (VVO) System Operation

DMS-Based Volt VAR Optimization Strengths and Weaknesses

• Strengths

- Fully coordinated, optimal solution
- Flexible operating objectives Accommodates varying operating objectives depending on present need
- Able to handle complex feeder arrangements Dynamic model updates automatically when reconfiguration occurs
- Works correctly following feeder reconfiguration
- System can model the effects of Distributed Generation and other modern grid elements - Handles high penetration of DER properly, including proper handling of reverse power flows

Weaknesses

- Not very scalable would not use this approach for one feeder or substation due to high control center
- High cost to implement, operate and sustain
- Learning curve for control room personnel
- Lack of field proven products

Auto-Adaptive Volt VAR Optimization

- processes real-time distribution system information to determine appropriate volt-VAR control actions and provide closed-loop feedback to accomplish electric utility specified objectives
- uses advanced signal processing techniques to determine what control actions are needed

Courtesy of PCS Utilidata

Auto-Adaptive Approach

Strengths

- Does not require models or predetermined rules
- Highly scalable (one substation or many)
- Weaknesses
 - (Presenter's opinion) → How it works is a bit of a mystery

Proving the Concept

Proof of Concept: What is it? and Why Do it?

- What is it?:
 - Typically a small-scale CVR demonstration on a few representative substations
 - Live operation on real feeders
 - Close observation of the results that are achieved
- Why Do It?
 - Not all feeders are created equal
 - Will CVR work as well on my distribution system?

Objectives for Proof of Concept

Primary Objectives:

- Show that CVR produces benefits without customer complaints
- Show that it works before "making the plunge"

Secondary Objectives:

- gain valuable implementation and operating experience
- compare vendor solutions

Measurement and Verification CVR Impact on Energy

Measurement and Verification CVR Impact on Demand

A simple approach – "flip the switch", measure "instantaneous" response

Basic approach to determine CVR/VVO benefit

- Lower tap setting by one position on LTC or Voltage regulator....
- Measure the change in load
- Problem with this approach
 - Initial response to voltage reduction is significant drop in load
 - Load reduction benefit usually drops off with time
 - Devices that run off a thermostat just run longer
 - Loss of load diversity

A simple approach – "flip the switch", measure "instantaneous" response

Basic approach to determine CVR/VVO benefit

- Lower tap setting by one position on LTC or Voltage regulator
- Measure the change in load
- Problem with this approach
 - Initial response to voltage reduction is significant drop in load
 - Load reduction benefit usually drops off with time
 - Devices that run off a thermostat just run longer
 - Loss of load diversity

A simple approach – measure instantaneous response (CVR response drops off with time)

Determining the benefits over time

- To overcome this issue, should observe CVR/VVO operation over time
- Benefit is difference between electrical conditions when CVR/VVO is running minus electrical conditions if CVR/VVO was not running
- For example:
 - Reduction in energy consumption = energy consumed when running CVR/VVO - energy that would have been consumed if CVR/VVO was not running
- Trick is determining what would have happened if CVR/VVO was not running!

S&C/Current Group approach to CVR/VVO M&V

- Use Powerflow program to determine what would have happened if CVR/VVO was not running
 - Most recent SCADA real/reactive power measurements
 - Load allocated from standard load profiles for each customer class
 - Voltage regulators and switched capacitor banks use standard controls
 - Compare power flow output with actual measures while running CVR/VVO

CVR/VVO "Time On – Time Off" Demonstrations

- Approach summary:
 - Turn CVR/VVO ON for period of time and record results
 - Turn CVR/VVO OFF for similar time period and record results
 - CVR/VVO Benefit is difference between the two

	CVR On/Off	VOLTAGE	MVAR	MW	TIME
CVR/VVO OFF	Off	123.9707634	-0.6036	1.5351	01:30:00
	Off	123.9192437	-0.6147	1.626	01:45:00
	Off	123.7390301	-0.6281	1.7889	02:00:00
CVR/VVO ON	On	118.846097	-0.649	1.6447	02:15:00
	On	119.0263457	-0.6947	1.7859	02:30:00
	On	118.8975816	-0.6539	1.5786	02:45:00
	On	118.9490662	-0.7025	1.8166	03:00:00

CVR/VVO "Time On – Time Off" Demonstrations

Issues:

 Easy to see benefits if load is nearly the same for the 2 time periods

CVR/VVO "Time On – Time Off" Demonstrations

- If natural load fluctuations occur, results are corrupted:
 - · Load variation due to temperature
 - Random (stochastic) customer behavior
 - Feeder outages, load transfers
 - Weekday/weekend, holidays
- Need to exclude "outlier" data (missing data, bad data) that can distort results

Techniques for dealing with fluctuations

- Exclude all missing and obviously bad data
- Exclude all data for weekends and special days (holidays)
- Normalize load to adjust for day to day variations due to:
 - Temperature/weather changes
 - Random (stochastic) customer behavior
- Two strategies
 - <u>CVR Protocol Number 1</u> (developed by David Bell of PCS
 Utilidata) used by Northwest Energy Efficiency Alliance (NEEA)
 - EPRI "Green Circuits" analysis (developed in cooperation with Dr Bobby Mee of Univ Tenn.)

Techniques for dealing with fluctuations

- Exclude bad/missing data and data for special days
- Perform statistical analysis to identify and eliminate potential outliers data. (Minimum Covariance Determinant (MCD) Robust Regression)
- Normalize the load:
 - NEEA
 - Adjust for temperature variations
 - EPRI Green Circuits
 - Adjust based on another circuit with a similar load composition
 - Similar circuit cannot be affected by voltage reduction on CVR fdr

NEEA

 $kW = \beta_0 + \beta_1 * hdh + \beta_2 * cdh$

Where: hdh = heating-degree hours cdh = cooling-degree hours

> 2 methods for determining what load "would have been" without CVR

EPRI GREEN CIRCUITS

 $kW = k_1 * kW_{comparable} + k2 * V_{state}$

Where: kW_{comp} = avg power measured at a comparable circuit

 V_{state} = 1 for normal voltage, 0 for reduced voltage

Some other points about POC

- Should pick substations that include representative feeder designs and customer mix
- POC time period should be long enough to capture seasonal variations
- CVR control system used for POC doesn't necessarily have to be the final vendor solution

Together...Shaping the Future of Electricity

Robert W. Uluski, PE

ruluski@epri.com

215-317-9105

